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AVERAGING IN PROBLEMS OF THE BENDING AND OSCILLATION 
OF STRESSED INHOMOGENEOUS PLATES* 

A.G. KOLPAKOV 

A method for describing on the average the bending and oscillation of 
strongly inhomogeneous plates, stressed in their plane, is proposed. A 
problem that arises in various fields of engineering differs from those 
considered in /2-4/ in that the operators are not known a priori to be 
of fixed sign. 

1. The bending of an inhomogeneous stressed plate. We consider a plate with 
irregular thickness of irregular elastic constants (ribbed or composition). Let forces be 
applied to the plate that produce in its plane a stressed state u$(x) (the parameter e 
characterizes the degree of irregularity). In the context of the Kirchhoff-Love hypothesis, 
the equation of equilibrium may be written as (we(x) is the normal bending of the plate) 

The flexural rigidity D"(x) and Poisson's ratio v"(x) (we consider locally isotropic 
plates) depend on the space variable x E@; QC Re is the bounded domain occupied by the 
plate. As the dependence of De, Ye on XI we take /2, 6, 7/ De(x) = D(x/e), ve(x)= v(x/e), where 
the functions D(y), v(y) have the characteristic size of oscillation equal to unity. The 
stresses aij"(x) in the plane of the plate are also functions of x with the characteristic 
size of oscillation equal to the characteristic size of the irregularity e. For e<<i, i.e., 
in the case of strongly irregular plates, in order to describe the bending and loss of 
stability we use /2-4, 8/ the asymptotic method of homogenization /6, 7/. 

Problem (1.1) will be studied asymptotically as e-+0 with the proviso that the plate 
edges are rigidly clamped (we know /l, 2/ that this is equivalent to considering (1.1) in 
functional space H,,*(Q) /9, lo/). We consider the problem in the abstract statement. Given 
the sequences of linear selfadjoint operators, bounded uniformly as e+ 01 

L,, L : Ho=(Q) -> IT-$ (Q); M,, M : Hok (Q) -> H-k (Q), 0 < k < 2 (4.2) 

(for the definition of a space of type Ha(Q) see e.g., /9, lo/). The operator-Lc is the 
sum of the first three terms of the left-hand side of (l.l), while -MB is the sum of the 
remaining terms, which describe the influence of the stresses in the planeof the plate on 
its normal bending. Let the operators L, and L be positive definite: there exists c > 8, 
independent of e + 0, such that <LBu, u)* 2 c (( u 11 *a for any u E Hoa (Q) (<.,.>c, II . Ilk is the 

operation of pairing and norming in H,‘(Q) /3/j. 

*Prikl.Ifatem.Mekhan.,51,1,60--G7,1907 
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This condition is satisfied if there exists cr>O, independent of e+O, such that 
cl < Da (I) < l/c,, cl < 1 - v (x) (e.g., if the material characteristics and thickness of the 
plate lie in an interval, independent of e+O). Mtice thate can be understood to be 
either a continuous nor a discrete parameter (e.g., e= iln,n~N). 

Definition 1 /ll/. The sequence of operators A,: Ho*(Q)-+fP’(Q) is G-convergent to 
the operator A: H~~(Q~~H-(Q), if, for any v* ~li-~(Q) &-$*+A-Iv* weakly in 
HP(Q) as e+O. 

Definition 2 /12/. The sequence of operators A,: H~m(Q)+H~m(Q) is strongly con- 
vergent in H-"(Q) to the operator A: H,m(Q)+H-m (Q), if, for any u E H,,- (Q) A&u-+ Au in 

H+(Q) as e+ 0. 

Proposition 1. Let the sequence (1.2) of operators L, be G-convergent to the operator 
L, and the sequence (1.2) of operators Me be strongly convergent in H-‘(Q) to the operator 
M. Consider the problem 

-Lu,fMw=f 0.3) 
Provided that h = 1 is not an eigenvalue of the problem LW = hhfw (condition A), the 

sequence of soltuions of problem (1.1) We+w weakly in Hoa as e+O, where w is a 
solution of problem (1.3). 

For the proof we require some preliminary lemmas_ 

Lemma 1. If the sequences of operators L,, A&, are convergent to operators L,M in the 
sense of Proposition 1, then, if condition A holds, there exists a number e,>O, independent 
Of B-0, such that 

where Sp, is the spectrum of the problem L,w--biU,w. 

Proof. lo. We shall show that the G-convergence of the sequence of operators 4: H,,~(Q)w 
IPa (Q) to the operator L implies that 

fl Le-' - L-'IcI,l=ow, 0<2<2 W) 

(For operators 1 .I&,6 we put U.O~_,~) 

The operators L8-1,L-1: H-m(Q)-H,%(Q) exists by virtue of the conditions imposed on L,,L, 
and hence they are defined as operators of R1(Q)CH-*(Q) and &r(Q)3&*(Q). If relation (1.5) 
is violated, there will exist 8>0 and {u,*jcITi(Q) such that #u,*kr=i and 

I L,-'tr,* - L-'u**13t > 8 (W 

Since I ue*ll-r< I us* kr<i and the imbedding of ET-'(Q) in A"(Q) is compact /lo, p.123/, 
there is a subsequence fu,,*}c(u,+), such that u,,*-+u* in H--l(Q) as q-0. Further, given any 
I* E H-%(Q) , the sequence IL,-l~*[t+[r;-*~* It< OQ by Definition 1. Then, by the theorem on 
uniform boundedness /9, p.269/, the sequence [L8-lfl_,,l is uniformly bounded as S-O. Then, 

lKJ'%J* ---%J* II <ll L;;'ILz*IllaII* - u* I4 tnL-lII*,III uv* - u+/l_.* + IIL;;'u* - L-h* iI1 (1.7) 

The expression on the right-hand side of (1.7) tends to zero as n-0 (we use Definition 
I), which is a contradiction with (1.6), so that (1.5) is proved. 

20. We shall show that the strong convergence of the sequence of operators Me to M in 
@ (0) implies that, with l>k, 

II M* - M 01,-z = 0 V) (1.8) 

The proof can be by similar methods to those used in lo. In fact, if (1.8) is violated, 
there will be a number 8>0 and a sequence {I& {v,}cHgr (Q): lJ~,[t, jJv& =i, suchthat I<i%&-- 
a&* Ql 1 2 6. Noting that the imbedding of space p(Q) into Ha(Q) is compact for m>a> 
fi7--co /lo/ and that the jlM,ljx,_z are uniformly bounded as e-10 /Q/ (see Sect.lO), we can 
extract subsequencies {+,{v,,) such that I <M,,u,,-Mu,,, v&l-0 as n-0. This is acontradiction, 
so that (1.8) is proved. 

3O. We rewrite the problem L,w==Uf8w in the equivalent form 
UI = LL,-'w P (f.Q) 

Notice that the operator Lee1 MB: HO'(Q)-HO'(Q), 2>1> k is selfadjoint, and since the 
operator L8-1: H-8 (Q)+tIpa(Q) is bounded, is csmpact /9/. By (1.5) and (1.8), and the uniform 
boundedness as 8-O of the quantities II LaWIL~, I, 1 M&, _I , we find that 

1 L,-w e - L-'MIII,z = O(i) (1.10) 

From (l.lO), using /12, p.365/, we obtain 

4O, Let (1.4) be violated. Then, there is a subsequence j%,+?.,,~Spa} such that 4-i 
as TJ--+ 0. By (l-11), there is a subsequence {A s: Ir't~ sp} fsp,,sp are the spectra of problems 
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L,w= hM,w and Lw=hMw respectively), such that (h,-??'I-0, y-0. Thus, h"-1 as q-0, 

{h'l) c Sp. But then, h=l is not a limit point of the spectral set Sp of the compact operator 

L-‘M /9/. Then, hV-.-l as q-0 can occur only if hn = 1, starting from some number. Rut 
h=i does not belong to the spectrum Sp of operator L-‘M, by virtue of condition A. This 
contradiction proves (1.4). 

Lemma 2. Under the conditions of Proposition 1, the sequence of solutions (w") of 

problem (1.1) is bounded in Hoe(Q) uniformly as E-O. 

Proof. We rewrite (1.1) in the equivalent form 

we = L,-'M@ - Lc,lf (1.12) 

and consider (1.12) in the space H,'(Q), 2> Z> k. Obviously, the solution of (1.12) belonging 

to space H,'(Q), also belongs to H,S(Q) and is a solution of problem (1.1). In view of (1.4), 

for the operator L,-‘M, we have the obvious estimate (see e.g., /12/) 

II (E - L,-lM,r’ UL, 1 < l/c, 
in view of which I/ uf Ill < u L,-’ kl,l If I-r/c* B % where ~@<a, is independent of e-0. Since the 

operators L, are uniformly positive definite as E- 0, the operators Lee': H-*(Q)--. H,*(Q) are 

uniformly bounded as E-0. The operators M,: Hok(Q)- Hmx(Q) are uniformly bounded as e-0 by 

hypothesis. Hence we find that ~~w"~~~.<c,(~~w"~~ +I)< cd, where cs<oc is independent of E-O. 

Proof of Proposition 1. By lemma 2, the sequence (we] is weakly compact in Hos(Q) /9/. 
Then, there is a subsequence (W")E (I& such that wq--w weakly in Hoa( and strongly in 

H,'(Q),l<2 as q-0. By (l.lO), Lq-lM~~q-L-lM~ in H,'(Q) as q - 0. In view of this and 

the fact that L,-If-L-If in H,'(Q), 1< 2, as q-0 (by virtue of the G-convergence of the 
sequence of operators L, to the operator L), we see that WE Ho%(Q) and is a solution of problem 

(1.3). This solution is unique, by condition A. Then, we - w weakly in Hoa as a- 0, 

where w is the solution of problem (1.3). 

Corollary. Under the conditions of Proposition 1, ti-+w in c(g) as e+ 0. 
For the proof, it suffices to use Proposition 1 and the appropriate imbedding theorem 

(see e.g., /9/j. 
The G-limiting operator L, which is again an operator of plate bending (but now homo- 

geneous and in general orthotropic) can be evaluated by the methods of /2, 6, 7/. The operator 

M, which describes the stressed state in the plane of the averaged plate, can be found as 

follows. Let the stresses ail*(x) be found by solving the problem of theory of elasticity 

of an inhomogeneous plane body /13/, which as the elastic constants Ee(x), V'(X), satisfying 

the conditions: cg < Ee (x) < I/Q, -‘/, + CO < ye (x) < 1 - CO, where CO > 0 is independent of 

E - 0. Then, see /ll, 14/, in the case of the first boundary value problem IJi j” (X) + Ui j (X) 

weakly in L,(Q) as e-0, where ail(x) are the stresses, which are found by solving the G- 

limiting problem of the plane theory of elasticity. The method of obtaining this G-limiting 

problem is described in /6, 7, 14, 15/. 

Proposition 2. If the stresses Uij'(x) in the plane of the plate are found by solving 

the plane problem of the theory of elasticity of an inhomogeneous body, then the conditions 

stated in (1.2) and in Proposition 1 on the sequence of operatorsM, are satisfied, if we put 

2>k>l, 5. Here, 

The proof, which is based on the weak convergence of Uij'(X) to oil(x) in J&(Q) as E+ 0 
is given in /3/. 

Note 1. Problem (1.1) has been considered above in the space H,s(Q), i.e., under the 

assumption that the plate edge is rigidly clamped. The results remain true if the edge is 

hinged or freely supported, or a combination of these cases /3/. The same applies to the 

problem of the theory of elasticity finding the stress eije (x) in the plane of the plate c/3, 

Proposition 5/J. 

2. Natural oscillations of an inhomogeneous stressed plate. The problem of 

finding the natural frequencies wk e and natural shapes u+~(x) of the plate qscillations has 

the form /l, 5, 13/ 

- L&'ke + az,w,e =OkyY(X)Wk~ (2.1) 

where 0 < cl0 < p”(x) .< I/C,, (cl0 is independent of e + 0) is the specific mass of the plate. 

The operators L, andM, are defined above. We consider the problem in the function space 

H,Z (Q) (Note 1 remains true). We define the operator 

N~:~EH~‘(Q)-~~~(x)uEL~(Q)cH-I(Q) 

The operator Ne is uniformly bounded with respect to E-+0, as an operator from Ho’(Q), 
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12 0 in L,(Q). We write problem (2.1) as 

wke =mke(- L, + Me)-' Newke (2.2) 

Lemma 3. Under condition A, the sequence of operators - J!& -+ Me : Ho’ (Q) + H-’ (Q) is G- 
convergent as s-0 to the operator --L + M : Ho2 (Q) - I?-* (Q). 

The proof follows from Proposition 1 and Definition 1. 
Let the sequence of functions p*(x)gL,(Q) hatre an average in the sense that there is a 

function <p>(x)~L, (Q) such that ffpe (x) - <p) (x))~(x)~x + 0, c-+ 0 for any ZJ cz L, (Q). 
4 

The operator N is defined in the same way as N,,with p"(x) replaced by <p>(x). 

Lenma 4. For l>O, 

IINe - N IIt,- = o VI, (2.3) 
Proof. Note that, by the weak convergence of the sequence of functions ,9(x) to <p,(x) 

in LII (Q), the sequence of operators N,: H,!(Q)- H-l(Q) is convergent to the operator Nstrongly 
in H-'(Q) for any l>O/3/. The lemma then follows from Para. of Lemma 1. 

We consider problem (2.2) with 2> Z>k>1.5, when Propositionsl, 2 hold. 

Lemma 5. For 2> l> k> 1,5, under condition A, we have 

II (--L, 4- Me)-lN, - (--L + Ml-'Nllz,< = 0 (1) (2.4) 

The proof uses the same methods as in Lemma 1. We make use of Lemma 4. 

Proposition 3. Under condition A, we have the following asymptotic behaviour of the 
natural frequencies {m*e} = f& of the plate oscillations: 

sup dist (we, 8)= o (I), r%dist (0, S&J = o (1) 
o%Sl, E 

where {ok} = 62 are the natural frequencies found by solving the problem (which describes the 
natural oscillations of a homogeneous plate) 

-'% + Mwk = oS<p)(x)w, (2.5) 
In view of (2.4), the proof follows at once from /12, p.365/. It has to be borne in 

mind that the operators (-L, -j- MJIN, and (-L +M)-IN are compact and selfadjoint. 

Note 2. All the above results extend to the case of the bending and oscillation of an 
inhomogeneous beam (Q= [a,b]). 

Example. To illustrate the application of our results, consider the example of the 
oscillations of an inhomogeneous beam (see Note 2). In this case 

The force p along the beam axis is (A - B)/[(o- b)(i/Ii+)], where A and Barethedisplacements 
of the beam ends with coordinates n, b. 

Note 3. In 
function I/De(z) 

the present case the G-limit of the sequence of operators L, exists, if the 
has a weak limit in &([a, b]) as e-0 (possibly with probability unity) /16/. 
_. . 

Put D= it<iiD*,, where C.) is the operation of taking the weak limit in L,([o, b]). We 
consider for simplicity the case when D is independent of s (which is the case when D'(z) is 
a periodic function), Then /16/, L=-DcrlrXtr. Problem (2.5) here takes the form 

d% 
DA 

-k 

d+ --ax= a+<P>~g 

Assume that the beam, while made of homogeneous material, has a variable cross-sectional 
area (is ribbed or has cuts /l/1. In the case of a ribbed beam D = E,<&.d>-1/(i2(i -v*)), <t/h? = 
(1/E,) <h,%, where & (4 is the beam thickness, .& is Young's modulus of the material. If the 
support is hinged, the natural frequencies of oscillation of the averaged beam can be shown 
to be 

I 

n'&Y~(xk'-" (h,'>-'(B - 4)/(b -a)) 
Ok 5= (b - Q)’ (P> , kern =R 1 (2.7) 

x = (h;g)-l n*/[i2(i - @)] 

Condition A takes the form 

xk*/(b - a) + <&-If-‘, Vk E: N (2.8) 

By Proposition 3 and Notes 1, 2, the spectrum of the natural frequencies of oscillation 



of the initial inhomogeneous beam converges under condition (2.8) to spectrum (2.7) in the 
sense indicated in Proposition 3. 

3. Forced oscillations of an inhomogeneous stressed plate. We consider the 
problem of the oscillation of these plates /l, 5, 13/ 

- L,w” + M,we = pe (x) @we/at2 + f(x) (3.1) 

We (x, 0) = wo (x), awe/at (xv 0) = ~‘1 (x), wo, w E Lz (Q) (3.2) 

Formalization and solvability of problem (3-l), (3.2) are connected with the positive 
definiteness (PD) of its stationary part ,?& -Me /lo, 17/. By hypothesis, operator L, are 
positive definite uniformly with respect to s-+0. In the case of homogeneous plates, it 
suffices, for PD of operators .& -Mer to limit the discussion to the class of loads which 
lead to non-positive definiteness of the stress tensor in the plate plane /13/. In an in- 
homogeneous plate, however, the stresses uije (x) in its plane, found by solving the problem 
of the theory of the elasticity of an inhomogeneous plane body, are stresses of general type 
and our method cannot be used. Let us show that, for operators L, -Me to be PD uniformly, 
starting with some c'>O, it suffices to refer the condition for non-positive definiteness 
to the averaged stress tensor e&*(x) (which defines the operator H, see Proposition 2). 

We introduce the sphere S(l) = (a EX$(Q) :I/ U& < If. 

Lemma 6. Given any &>O, there exists e,(6)> 0 such that, for all ups and 
e<e,(@, we have 

<L& u>s - <M&L, u>s > c -<Mu, u>* - 6 (3.3) 

Proof. In view of the conditions imposed on 4: <Leut~)g>~, VUE S(t). Since the imbedding 

of K?(Q) into &k(Q) is compact for k<Z, there exists in S(1) the finite se-mesh 

t:%(*; ir,' fQ) W = N (8’) < 4. By the conditions imposed on the operators MB (1.21, given any 

, there is an element u, of the so-mesh such that 

I t.Mp, II)* - tM&u &I)1 I G CE” (3.4) 

where the constant C<m on the right-hand side can be chosen independently of lA es s (i). 
Moreover, since the sequence of operators h&is strongly convergent to the operator M in 

H-'(Q) and the so-mesh is finite for any e, starting with some s(N)>@, we have 

f ‘Me&h =I& - CM%,, =nn)n I< 39 (3.5) 

vu, E &,),N_r, N = N(e') < 00 

We consider 8>0 and choose e0 from the condition Ce'<6/3 (see (3.4)), then choose 
h(N)>0 from the condition Z<8/3 (see (3.5)). Then, by (3.4) and (3.51, and the inequality 
of type (3.4) for operator M, we see that, for all &ES(I) and s<e, (N), the left-hand side 
of (3.41 is not greater than 6. From this, and the estimate for <L,u,u)~, we obtain (3.31. 

Lemma7. Starting with some e,(8)> 0, we have 

<LA u>z - <MA u>e > PII uIIP', Vu E Hoa (Q) 

where p is the right-hand side of (3.3). 
The lemma is obvious, since the operators L,, Me are linear. 

Proposition 4. If the tensor ail(x) of the average stressed state is non-positive 
definite, then, starting from some e'>O, the operators L,-M, are positive definite 
all O<e Be'. 

Proof. In the present case 

<-MI,.>*= - ~b,j(x)U,iU,jdX>,% Vrr.E&'(Q) 
h 

in view of which it is sufficient to use Lemmas6and 7, putting B<cj2 in (3.3). 

(3.6) 

for 

We can now use Theorem 6.3 of /17, p.89/ to study the asymptotic behaviour as e-+0 of 
the solution of problem (3.11, (3.2). For the theorem to be applicable, the stationary part 
of problem (3.1), (3.2), i.e., the operators &- Me, must be positive definite, which is the 
case here by Proposition 4. 

Proposition 5. Let the sequences of opdrators L,, Ma be convergent to the operators 

.&M in the sense indicated in Proposition 1, and let the tensor u*,(x) be non-positive 
definite. Then, the sequence of solutions of problem (3.11, (3.2) raC-+u?o*-weakly in L,([O, 
0~1, Has (Q)) as e-t 0, where w is the solution of the equation 

--LKJ + Mw = <p> (~)a%/&* + f (x) 

with initial conditions (3.2). 
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The proof is a repetition of the proof of Theorem 6.3 of /17/ (with suitable replacement 
of the functional spaces, since part of the results in /17/ is obtained in the context of a 
second-order equation). 

Note 4. It is interesting to study problem (3.11, (3.2) in the case when the operators 
are non-positive (e.g., oscillations of compressed plate). We showed above that the problem 
of the natural oscillations admits of an averaged description in this case, admittedly under 
the condition (condition A) that the stresses in the plane of the plate do not lead to loss 
of stability; this further poses the question of an average description of the oscillations 
when the plate stability is lost or is near to being lost. 

Note 5. Our results of Paras. and 2 can be extended to the case of densely perforated 
plates. In the proofs, we then have to use, in addition to our above methods, the methods and 
results of /18, 19,". By using the results of f20/ we can obtain here explicit expressions 
for the averaged characteristics of reticular plates. 
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